Evidence for the presence of a cellulase gene in the last common ancestor of bilaterian animals.

نویسندگان

  • Nathan Lo
  • Hirofumi Watanabe
  • Masahiro Sugimura
چکیده

Until recently, the textbook view of cellulose hydrolysis in animals was that gut-resident symbiotic organisms such as bacteria or unicellular eukaryotes are responsible for the cellulases produced. This view has been challenged by the characterization and sequencing of endogenous cellulase genes from some invertebrate animals, including plant-parasitic nematodes, arthropods and a mollusc. Most of these genes are completely unrelated in terms of sequence, and their evolutionary origins remain unclear. In the case of plant-parasitic nematodes, it has been suggested that their ancestor obtained a cellulase gene via horizontal gene transfer from a prokaryote, and similar suggestions have been made about a cellulase gene recently discovered in a sea squirt. To improve understanding about the evolution of animal cellulases, we searched for all known types of these enzymes in GenBank, and performed phylogenetic comparisons. Low phylogenetic resolution was found among most of the sequences examined, however, positional identity in the introns of cellulase genes from a termite, a sea squirt and an abalone provided compelling evidence that a similar gene was present in the last common ancestor of protostomes and deuterostomes. In a different enzyme family, cellulases from beetles and plant-parasitic nematodes were found to cluster together. This result questions the idea of lateral gene transfer into the ancestors of the latter, although statistical tests did not allow this possibility to be ruled out. Overall, our results suggest that at least one family of endogenous cellulases may be more widespread in animals than previously thought.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins

The opsin gene family encodes key proteins animals use to sense light and has expanded dramatically as it originated early in animal evolution. Understanding the origins of opsin diversity can offer clues to how separate lineages of animals have repurposed different opsin paralogs for different light-detecting functions. However, the more we look for opsins outside of eyes and from additional a...

متن کامل

Phylogenetic Analysis of the Wnt Gene Family Insights from Lophotrochozoan Members

The Wnt gene family encodes secreted signaling molecules that control cell fate specification, proliferation, polarity, and movements during animal development. We investigate here the evolutionary history of this large multigenic family. Wnt genes have been almost exclusively isolated from two of the three main subdivisions of bilaterian animals, the deuterostomes (which include chordates and ...

متن کامل

The Segmented Urbilateria: A Testable Scenario1

SYNOPSIS. The idea that the last common ancestor of bilaterian animals (Urbilateria) was segmented has been raised recently on evidence coming from comparative molecular embryology. Leaving aside the complex debate on the value of genetic evidence, the morphological and developmental evidence in favor of a segmented Urbilateria are discussed in the light of the emerging molecular phylogeny of m...

متن کامل

Metazoan Evolution: Some Animals Are More Equal than Others

Comparison of newly available sequence data facilitates reconstruction of the gene inventory of the Urbilateria, the last common ancestor of flies, nematodes and humans. The most surprising outcome is that human genes seem to be closer to the bilaterian roots than previously assumed.

متن کامل

Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

BACKGROUND Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no "true" Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDIN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 270 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2003